12 research outputs found

    Chaos-Based Communication Systems

    Get PDF
    The attractive properties of chaos signal that is generated from dynamic systems motivate the researchers to explore the advantage of using this signal type as a carrier in different communication systems. In this chapter, different types of digital chaos–based communication system are discussed; in particular, digital communications where reference signal and its modulated version are transmitted together. This type is called differential coherent systems. Brief surveys on the recently developed systems are presented

    Neural Network Principles and Applications

    Get PDF
    Due to the recent trend of intelligent systems and their ability to adapt with varying conditions, deep learning becomes very attractive for many researchers. In general, neural network is used to implement different stages of processing systems based on learning algorithms by controlling their weights and biases. This chapter introduces the neural network concepts, with a description of major elements consisting of the network. It also describes different types of learning algorithms and activation functions with the examples. These concepts are detailed in standard applications. The chapter will be useful for undergraduate students and even for postgraduate students who have simple background on neural networks

    Wavelet Theory and Application in Communication and Signal Processing

    Get PDF
    Wavelet analysis is the recent development in applied mathematics. For several applications, Fourier analysis fails to provide tangible results due to non-stationary behavior of signals. In such situation, wavelet transforms can be used as a potential alternative. The book chapter starts with the description about importance of frequency domain representation with the concept of Fourier series and Fourier transform for periodic, aperiodic signals in continuous and discrete domain followed by shortcoming of Fourier transform. Further, Short Time Fourier Transform (STFT) will be discussed to induce the concept of time frequency analysis. Explanation of Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) will be provided with the help of theoretical approach involving mathematical equations. Decomposition of 1D and 2D signals will be discussed suitable examples, leading to application concept. Wavelet based communication systems are becoming popular due to growing multimedia applications. Wavelet based Orthogonal Frequency Division Multiplexing (OFDM) technique and its merit also presented. Biomedical signal processing is an emerging field where wavelet provides considerable improvement in performance ranging from extraction of abnormal areas and improved feature extraction scheme for further processing. Advancement in multimedia systems together with the developments in wireless technologies demands effective data compression schemes. Wavelet transform along with EZW, SPIHT algorithms are discussed. The chapter will be a useful guide to undergraduate and post graduate who would like to conduct a research study that include wavelet transform and its usage

    SARS-CoV-2 Infection Is at Herd Immunity in the Majority Segment of the Population of Qatar.

    Get PDF
    BACKGROUND: Qatar experienced a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic that disproportionately affected the craft and manual worker (CMW) population, who comprise 60% of the total population. This study aimed to assess ever and/or current infection prevalence in this population. METHODS: A cross-sectional population-based survey was conducted during July 26 to September 09, 2020, to assess both anti-SARS-CoV-2 positivity through serological testing and current infection positivity through polymerase chain reaction (PCR) testing. Associations with antibody and PCR positivity were identified through regression analyses. RESULTS: The study included 2641 participants, 69.3% of whom were <40 years of age. Anti-SARS-CoV-2 positivity was 55.3% (95% CI, 53.3%-57.3%) and was significantly associated with nationality, geographic location, educational attainment, occupation, and previous infection diagnosis. PCR positivity was 11.3% (95% CI, 9.9%-12.8%) and was significantly associated with nationality, geographic location, occupation, contact with an infected person, and reporting 2 or more symptoms. Infection positivity (antibody and/or PCR positive) was 60.6% (95% CI, 58.6%-62.5%). The proportion of antibody-positive CMWs who had a prior SARS-CoV-2 diagnosis was 9.3% (95% CI, 7.9%-11.0%). Only seven infections were ever severe, and only 1 was ever critical-an infection severity rate of 0.5% (95% CI, 0.2%-1.0%). CONCLUSIONS: Six in every 10 CMWs in Qatar have been infected, suggestive of reaching the herd immunity threshold. Infection severity was low, with only 1 in every 200 infections progressing to be severe or critical. Only 1 in every 10 infections had been previously diagnosed, which is suggestive of mostly asymptomatic or mild infections

    Design and Implementation of a Chaotic Scheme in Additive White Gaussian Noise Channel

    No full text
    A new chaotic scheme named Flipped Chaotic On-Off Keying (FCOOK) is proposed for binary transmission. In FCOOK, the low correlation value between the stationary signal and its mirrored version is utilized. Transmitted signal for binary 1 is a chaotic segment added to its time flipped (mirrored) version within one bit duration, while in binary 0, no transmission takes place within the same bit duration. The proposed scheme is compared with the standard chaotic systems: Differential Chaos Shift Keying (DCSK) and Correlation Delay Shift Keying (CDSK). The Bit Error Rate (BER) of FCOOK is studied analytically based on Gaussian approximation method. Results show that the BER performance of FCOOK outperforms DCSK and CDSK in AWGN channel environment and with various Eb/No levels. Additionally, FCOOK offers a double bit rate compared with the standard DCSK

    Analysis and Design of an Energy Efficient Differential Coherent Chaos Based System in Additive White Gaussian Noise Environment

    No full text
    A new differential coherent chaos based scheme is proposed and named as Differential Chaos ON-OFF Keying (DCOOK). The proposed scheme provides reduction in bit energy and better bit error performance at large spreading factor. This is achieved by presenting each transmitted bit by either identical segment or no transmission within same bit duration. The receiver performs simple correlation between the received signal and its delayed version to determine the transmitted information utilizing the low correlation between the noise signals. The bit error rate (BER) performance of the proposed scheme is evaluated analytically using Gaussian Approximation (GA) method and compared with the simulation results. The results show excellent agreement between the derived expression and simulation. Moreover, the BER of DCOOK scheme is compared with the standard chaos systems: Chaos ON-OFF Keying (COOK), Differential Chaos Shift Keying (DCSK), and Correlation Delay Shift Keying (CDSK). The comparison results show that DCOOK scheme can always achieve superior performance compared to COOK and CDSK schemes and even exceeds the performance of DCSK scheme at typical spreading factor values

    IoT based wearable device to monitor the signs of quarantined remote patients of COVID-19

    No full text
    Monitoring and managing potential infected patients of COVID-19 is still a great challenge for the latest technologies. In this work, IoT based wearable monitoring device is designed to measure various vital signs related to COVID-19. Moreover, the system automatically alerts the concerned medical authorities about any violations of quarantine for potentially infected patients by monitoring their real time GPS data. The wearable sensor placed on the body is connected to edge node in IoT cloud where the data is processed and analyzed to define the state of health condition. The proposed system is implemented with three layered functionalities as wearable IoT sensor layer, cloud layer with Application Peripheral Interface (API) and Android web layer for mobile phones. Each layer has individual functionality, first the data is measured from IoT sensor layer to define the health symptoms. The next layer is used to store the information in the cloud database for preventive measures, alerts, and immediate actions. The Android mobile application layer is responsible for providing notifications and alerts for the potentially infected patient family respondents. The integrated system has both API and mobile application synchronized with each other for predicting and alarming the situation. The design serves as an essential platform that defines the measured readings of COVID-19 symptoms for monitoring, management, and analysis. Furthermore, the work disseminates how digital remote platform as wearable device can be used as a monitoring device to track the health and recovery of a COVID-19 patient

    Enhancement of levodopa stability when complexed with β-cyclodextrin in transdermal patches

    No full text
    <p>Levodopa is a promising candidate for administration via the transdermal route because it exhibits a short plasma half-life and has a small window of absorption in the upper section of the small intestine. The aim of this study was to prepare stable levodopa transdermal patches. Both xanthan gum and Carbopol 971 polymers were selected with ethylcellulose constituting the backing layer of the prepared patches. The effect of adding β-cyclodextrin on the prepared patches was investigated. The uniformity in thickness, weight and content of the studied patches was acceptable. Physicochemical characterization revealed that there was no interaction between levodopa and the applied polymer. The results proved that levodopa precipitated as an amorphous form in carbopol patches. Controlled drug release was achieved for all the tested patches over a 6 h period. However, increased permeation was achieved for the carbopol patches. Although cyclodextrin did not enhance levodopa permeation, the stability study confirmed that levodopa stability was enhanced when complexed with β-cyclodextrin. The cumulative amount of drug released from carbopol patches is slightly higher than that of xanthan patches. The optimal stability was achieved in the carbopol/levodopa:β-cyclodextrin patch. The levodopa-β-cyclodextrin complex was successfully characterized using X-ray diffraction, NMR analysis and molecular dynamics simulations. In conclusion, carbopol/levodopa:β-cyclodextrin patches can be considered as a promising stable and effective transdermal drug-delivery system.</p
    corecore